High School

We're glad you stopped by Evaluate tex left 5 4 right left 5 2 right tex A tex frac 1 25 tex B 25 C tex 25 tex D tex. This page is here to walk you through essential details with clear and straightforward explanations. Our goal is to make your learning experience easy, enriching, and enjoyable. Start exploring and find the information you need!

Evaluate [tex]-\left(5^{-4}\right)\left(5^2\right)[/tex].

A. [tex]-\frac{1}{25}[/tex]

B. 25

C. [tex]-25[/tex]

D. [tex]\frac{1}{25}[/tex]

Answer :

To evaluate the expression [tex]\(-\left(5^{-4}\right)\left(5^2\right)\)[/tex], follow these steps:

1. Calculate [tex]\(5^{-4}\)[/tex]:
- The expression [tex]\(5^{-4}\)[/tex] means [tex]\(1\)[/tex] divided by [tex]\(5^4\)[/tex].
- [tex]\(5^4 = 5 \times 5 \times 5 \times 5 = 625\)[/tex].
- So, [tex]\(5^{-4} = \frac{1}{625} = 0.0016\)[/tex].

2. Calculate [tex]\(5^2\)[/tex]:
- The expression [tex]\(5^2\)[/tex] means [tex]\(5 \times 5\)[/tex].
- [tex]\(5^2 = 25\)[/tex].

3. Multiply the results:
- Now, multiply [tex]\(5^{-4}\)[/tex] and [tex]\(5^2\)[/tex] together: [tex]\(0.0016 \times 25\)[/tex].
- This gives [tex]\(0.04\)[/tex].

4. Apply the negative sign:
- The expression has a negative sign in front of the entire product.
- So, [tex]\(-0.04\)[/tex].

Therefore, the evaluated and simplified result of [tex]\(-\left(5^{-4}\right)\left(5^2\right)\)[/tex] is [tex]\(-0.04\)[/tex]. However, none of the provided options exactly matches [tex]\(-0.04\)[/tex] directly. When formatted, this result aligns with the option [tex]\(-\frac{1}{25}\)[/tex].

We appreciate you taking the time to read Evaluate tex left 5 4 right left 5 2 right tex A tex frac 1 25 tex B 25 C tex 25 tex D tex. We hope the insights shared have been helpful in deepening your understanding of the topic. Don't hesitate to browse our website for more valuable and informative content!

Rewritten by : Batagu