College

We're glad you stopped by For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees. This page is here to walk you through essential details with clear and straightforward explanations. Our goal is to make your learning experience easy, enriching, and enjoyable. Start exploring and find the information you need!

For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She wants to convert that temperature from degrees Fahrenheit to degrees Celsius using the function [tex]C(F) = \frac{5}{9}(F-32)[/tex]. What does [tex]C(F)[/tex] represent?

A. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Celsius when the input [tex]F[/tex] is in degrees Fahrenheit.

B. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Fahrenheit when the input [tex]C[/tex] is in degrees Celsius.

C. [tex]C(F)[/tex] represents the output of the function [tex]C[/tex] in degrees Fahrenheit when the input [tex]F[/tex] is in degrees Celsius.

D. [tex]C(F)[/tex] represents the output of the function [tex]F[/tex] in degrees Celsius when the input [tex]C[/tex] is in degrees Fahrenheit.

Answer :

To determine what [tex]$C(F)$[/tex] represents in the context of the given function, we need to understand how the function is being used to convert temperatures.

The function provided is [tex]$\subset(F) = \frac{5}{9}(F - 32)$[/tex]. This function is used to convert a temperature in degrees Fahrenheit ([tex]$F$[/tex]) to degrees Celsius. Here's a step-by-step explanation:

1. Identify the Purpose of the Function:
- The function [tex]$\subset(F) = \frac{5}{9}(F - 32)$[/tex] is a standard formula for converting temperatures from Fahrenheit to Celsius.

2. Understand the Components:
- [tex]$F$[/tex] is the input, representing a temperature in degrees Fahrenheit.
- The expression [tex]$\frac{5}{9}(F - 32)$[/tex] calculates the equivalent temperature in degrees Celsius.

3. Analyze What [tex]$C(F)$[/tex] Represents:
- The notation [tex]$C(F)$[/tex] indicates that [tex]$C$[/tex] is a function of [tex]$F$[/tex]. Therefore, [tex]$C(F)$[/tex] gives the temperature in degrees Celsius corresponding to the input temperature [tex]$F$[/tex] in degrees Fahrenheit.

Given this context, let's match it with the options provided:

- Option 1: [tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

This option accurately describes the conversion process. Thus, [tex]$C(F)$[/tex] is the temperature in degrees Celsius that you get after converting from degrees Fahrenheit. Therefore, the correct representation of [tex]$C(F)$[/tex] is described by the first option:

[tex]$C(F)$[/tex] represents the output of the function [tex]$C$[/tex] in degrees Celsius when the input [tex]$F$[/tex] is in degrees Fahrenheit.

We appreciate you taking the time to read For one month Siera calculated her hometown s average high temperature in degrees Fahrenheit She wants to convert that temperature from degrees Fahrenheit to degrees. We hope the insights shared have been helpful in deepening your understanding of the topic. Don't hesitate to browse our website for more valuable and informative content!

Rewritten by : Batagu