High School

We're glad you stopped by Factor tex frac 1 25 p 2 100 tex A tex frac 1 5 p 2 100 tex B tex frac 1 25 p 2. This page is here to walk you through essential details with clear and straightforward explanations. Our goal is to make your learning experience easy, enriching, and enjoyable. Start exploring and find the information you need!

Factor [tex]\frac{1}{25} p^2 - 100[/tex]:

A. [tex]\frac{1}{5} p^2 - 100[/tex]

B. [tex]\frac{1}{25} p^2 + 100[/tex]

C. [tex]\left(\frac{1}{5} p + 10\right)\left(\frac{1}{5} p - 10\right)[/tex]

D. [tex]\left(\frac{1}{25} p + 10\right)\left(\frac{1}{25} p - 10\right)[/tex]

Answer :

To factor the expression [tex]\(\frac{1}{25} p^2 - 100\)[/tex], we can use the difference of squares formula. A difference of squares is an expression in the form [tex]\(a^2 - b^2\)[/tex], and it factors into [tex]\((a + b)(a - b)\)[/tex].

Here's how we can apply it step-by-step:

1. Identify the square terms:
The given expression is [tex]\(\frac{1}{25} p^2 - 100\)[/tex].

Let's rewrite [tex]\(\frac{1}{25} p^2\)[/tex] as [tex]\(\left(\frac{1}{5} p\right)^2\)[/tex].

Similarly, write [tex]\(100\)[/tex] as [tex]\(10^2\)[/tex].

2. Expression in terms of squares:
Now, the expression becomes [tex]\(\left(\frac{1}{5} p\right)^2 - 10^2\)[/tex].

3. Apply the difference of squares formula:
Now that we have the expression [tex]\(a^2 - b^2\)[/tex] where [tex]\(a = \frac{1}{5} p\)[/tex] and [tex]\(b = 10\)[/tex], we can factor it using:

[tex]\[
a^2 - b^2 = (a + b)(a - b)
\][/tex]

Substituting the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex], we get:

[tex]\[
\left(\frac{1}{5} p + 10\right)\left(\frac{1}{5} p - 10\right)
\][/tex]

So, the factored form of [tex]\(\frac{1}{25} p^2 - 100\)[/tex] is [tex]\(\left(\frac{1}{5} p + 10\right)\left(\frac{1}{5} p - 10\right)\)[/tex], which matches option [tex]\(c\)[/tex].

We appreciate you taking the time to read Factor tex frac 1 25 p 2 100 tex A tex frac 1 5 p 2 100 tex B tex frac 1 25 p 2. We hope the insights shared have been helpful in deepening your understanding of the topic. Don't hesitate to browse our website for more valuable and informative content!

Rewritten by : Batagu